Patch-Wise Deep Metric Learning for Unsupervised Low-Dose CT Denoising
Author:
Publisher
Springer Nature Switzerland
Link
https://link.springer.com/content/pdf/10.1007/978-3-031-16446-0_60
Reference23 articles.
1. Ahn, S.H., Kim, Y.W., Baik, S.K., Hwang, Yeon, J., Lee, I.W.: Usefulness of computed tomography hounsfield unit measurement for diagnosis of congenital cholesteatoma. J. Korean Radiol. Soc. 70, 153–158 (2014)
2. Bai, T., Wang, B., Nguyen, D., Jiang, S.: Probabilistic self-learning framework for low-dose CT denoising. Med. Phys. 48(5), 2258–2270 (2021)
3. Brenner, D.J., Hall, E.J.: Computed tomography - An increasing source of radiation exposure, November 2007. https://doi.org/10.1056/NEJMra072149. http://www.nejm.org/doi/abs/10.1056/NEJMra072149
4. Chen, H., et al.: Low-dose CT With a residual encoder-decoder convolutional neural network. IEEE Trans. Med. Imaging 36(12), 2524–2535 (2017)
5. Thukral, C.L., Singh, A., Singh, S., Sood, A.S., Singh, K.: Role of high resolution computed tomography in evaluation of pathologies of temporal bone. J. Clin. Diagnostic Res. 9, TC07–TC10 (2015)
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Unsupervised and Self-supervised Learning in Low-Dose Computed Tomography Denoising: Insights from Training Strategies;Journal of Imaging Informatics in Medicine;2024-09-04
2. Unsupervised low-dose CT denoising using bidirectional contrastive network;Computer Methods and Programs in Biomedicine;2024-06
3. Dual-Channel in Spatial-Frequency Domain CycleGAN for perceptual enhancement of transcranial cortical vascular structure and function;Computers in Biology and Medicine;2024-05
4. Deep learning-based algorithms for low-dose CT imaging: A review;European Journal of Radiology;2024-03
5. An Efficient Sinogram Domain Fully Convolutional Interpolation Network for Sparse-View Computed Tomography Reconstruction;Applied Sciences;2023-10-13
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3