An Efficient Sinogram Domain Fully Convolutional Interpolation Network for Sparse-View Computed Tomography Reconstruction

Author:

Guo Fupei1,Yang Bo1ORCID,Feng Hao1,Zheng Wenfeng1ORCID,Yin Lirong2ORCID,Yin Zhengtong3ORCID,Liu Chao4ORCID

Affiliation:

1. School of Automation, University of Electronic Science and Technology of China, Chengdu 611731, China

2. Department of Geography and Anthropology, Louisiana State University, Baton Rouge, LA 70803, USA

3. College of Resource and Environment Engineering, Guizhou University, Guiyang 550025, China

4. Laboratory of Computer Science, Robotics and Microelectronics of Montpellier (LIRMM), University of Montpellier-French National Center for Scientific Research, UMR 5506, 34095 Montpellier, France

Abstract

Recently, deep learning techniques have been used for low-dose CT (LDCT) reconstruction to reduce the radiation risk for patients. Despite the improvement in performance, the network models used for LDCT reconstruction are becoming increasingly complex and computationally expensive under the mantra of “deeper is better”. However, in clinical settings, lightweight models with a low computational cost and short reconstruction times are more popular. For this reason, this paper proposes a computationally efficient CNN model with a simple structure for sparse-view LDCT reconstruction. Inspired by super-resolution networks for natural images, the proposed model interpolates projection data directly in the sinogram domain with a fully convolutional neural network that consists of only four convolution layers. The proposed model can be used directly for sparse-view CT reconstruction by concatenating the classic filtered back-projection (FBP) module, or it can be incorporated into existing dual-domain reconstruction frameworks as a generic sinogram domain module. The proposed model is validated on both the 2016 NIH-AAPM-Mayo Clinic LDCT Grand Challenge dataset and The Lung Image Database Consortium dataset. It is shown that despite the computational simplicity of the proposed model, its reconstruction performance at lower sparsity levels (1/2 and 1/4 radiation dose) is comparable to that of the sophisticated baseline models and shows some advantages at higher sparsity levels (1/8 and 1/15 radiation dose). Compared to existing sinogram domain baseline models, the proposed model is computationally efficient and easy to train on small training datasets, and is thus well suited for clinical real-time reconstruction tasks.

Funder

Sichuan Science and Technology Support Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3