1. Darvish Rouhani, B., Lo, D., Zhao, R., Liu, M., Fowers, J., Ovtcharov, K., Vinogradsky, A., Massengill, S., Yang, L., Bittner, R., et al.: Pushing the limits of narrow precision inferencing at cloud scale with microsoft floating point. Adv. Neural. Inf. Process. Syst. 33, 10271–10281 (2020)
2. Lian, X., Liu, Z., Song, Z., Dai, J., Zhou, W., Ji, X.: High-performance FPGA-based CNN accelerator with block-floating-point arithmetic. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 27(8), 1874–1885 (2019)
3. Song, Z., Liu, Z., Wang, D.: Computation error analysis of block floating point arithmetic oriented convolution neural network accelerator design. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)
4. Yang, G., Zhang, T., Kirichenko, P., Bai, J., Wilson, A.G., De Sa, C.: SWALP: Stochastic weight averaging in low precision training. In: International Conference on Machine Learning, pp. 7015–7024. PMLR (2019)
5. Fan, H., Wang, G., Ferianc, M., Niu, X., Luk, W.: Static block floating-point quantization for convolutional neural networks on FPGA. In: International Conference on Field-Programmable Technology (ICFPT), pp. 28–35. IEEE (2019)