Computation Error Analysis of Block Floating Point Arithmetic Oriented Convolution Neural Network Accelerator Design

Author:

Song Zhourui,Liu Zhenyu,Wang Dongsheng

Abstract

The heavy burdens of computation and off-chip traffic impede deploying the large scale convolution neural network on embedded platforms. As CNN is attributed to the strong endurance to computation errors, employing block floating point (BFP) arithmetics in CNN accelerators could save the hardware cost and data traffics efficiently, while maintaining the classification accuracy. In this paper, we verify the effects of word width definitions in BFP to the CNN performance without retraining. Several typical CNN models, including VGG16, ResNet-18, ResNet-50 and GoogLeNet, were tested in this paper. Experiments revealed that 8-bit mantissa, including sign bit, in BFP representation merely induced less than 0.3% accuracy loss. In addition, we investigate the computational errors in theory and develop the noise-to-signal ratio (NSR) upper bound, which provides the promising guidance for BFP based CNN engine design.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mirage: An RNS-Based Photonic Accelerator for DNN Training;2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA);2024-06-29

2. Design of an Efficient Deep Neural Network Accelerator Based on Block Posit Number Representation;2024 International VLSI Symposium on Technology, Systems and Applications (VLSI TSA);2024-04-22

3. FIGNA: Integer Unit-Based Accelerator Design for FP-INT GEMM Preserving Numerical Accuracy;2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2024-03-02

4. Improving finite-difference time-domain memory bandwidth by using block floating-point arithmetic;2023 31st Telecommunications Forum (TELFOR);2023-11-21

5. Machine Learning;Design for Embedded Image Processing on FPGAs;2023-09-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3