1. Abdar, M., et al.: A review of uncertainty quantification in deep learning: techniques, applications and challenges. Inf. Fusion 76, 243–297 (2021)
2. Afgani, M., Sinanovic, S., Haas, H.: Anomaly detection using the Kullback-Leibler divergence metric. In: 2008 First International Symposium on Applied Sciences on Biomedical and Communication Technologies, pp. 1–5 (2008)
3. Alaa, A., Van Der Schaar, M.: Frequentist uncertainty in recurrent neural networks via blockwise influence functions. In: III, H.D., Singh, A. (eds.) Proceedings of the 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, 13–18 July 2020, vol. 119, pp. 175–190. PMLR (2020)
4. Bansal, P., Deshpande, P., Sarawagi, S.: Missing value imputation on multidimensional time series. Proc. VLDB Endow. 14(11), 2533–2545 (2021)
5. Berglund, M., Raiko, T., Honkala, M., Kärkkäinen, L., Vetek, A., Karhunen, J.T.: Bidirectional recurrent neural networks as generative models. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc. (2015)