Missing value imputation on multidimensional time series

Author:

Bansal Parikshit1,Deshpande Prathamesh1,Sarawagi Sunita1

Affiliation:

1. IIT Bombay

Abstract

We present DeepMVI, a deep learning method for missing value imputation in multidimensional time-series datasets. Missing values are commonplace in decision support platforms that aggregate data over long time stretches from disparate sources, whereas reliable data analytics calls for careful handling of missing data. One strategy is imputing the missing values, and a wide variety of algorithms exist spanning simple interpolation, matrix factorization methods like SVD, statistical models like Kalman filters, and recent deep learning methods. We show that often these provide worse results on aggregate analytics compared to just excluding the missing data. DeepMVI expresses the distribution of each missing value conditioned on coarse and fine-grained signals along a time series, and signals from correlated series at the same time. Instead of resorting to linearity assumptions of conventional matrix factorization methods, DeepMVI harnesses a flexible deep network to extract and combine these signals in an end-to-end manner. To prevent over-fitting with high-capacity neural networks, we design a robust parameter training with labeled data created using synthetic missing blocks around available indices. Our neural network uses a modular design with a novel temporal transformer with convolutional features, and kernel regression with learned embeddings. Experiments across ten real datasets, five different missing scenarios, comparing seven conventional and three deep learning methods show that DeepMVI is significantly more accurate, reducing error by more than 50% in more than half the cases, compared to the best existing method. Although slower than simpler matrix factorization methods, we justify the increased time overheads by showing that DeepMVI provides significantly more accurate imputation that finally impacts quality of downstream analytics.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Mixture of Experts based on Large Language Models for Low-Resource Data Preprocessing;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. Mining of Switching Sparse Networks for Missing Value Imputation in Multivariate Time Series;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

3. Iterative missing value imputation based on feature importance;Knowledge and Information Systems;2024-07-05

4. Enriching Relations with Additional Attributes for ER;Proceedings of the VLDB Endowment;2024-07

5. Scaling Up Multivariate Time Series Pre-Training with Decoupled Spatial-Temporal Representations;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3