Author:
Mouatassim Tariq,El Ghazi Hassan,Bouzaachane Khadija,El Guarmah El Mahdi,Lahsen-Cherif Iyad
Publisher
Springer Nature Switzerland
Reference32 articles.
1. Alani, M.M., Miri, A.: Towards an explainable universal feature set for IoT intrusion detection. Sensors 22(15), 5690 (2022). https://doi.org/10.3390/s22155690, https://www.mdpi.com/1424-8220/22/15/5690
2. Carrier, T., Victor, P., Tekeoglu, A., Lashkari, A.H.: Malware Memory Analysis | Datasets | Canadian Institute for Cybersecurity | UNB — unb.ca. https://www.unb.ca/cic/datasets/malmem-2022.html. Accessed 12 Oct 2023
3. Cichonski, P., Millar, T., Grance, T., Scarfone, K.: Computer security incident handling guide(800-61-revision 2). Nat. Inst. Stand. Technol. 10 (2012)
4. Devan, P., Khare, N.: An efficient XGBoost-DNN-based classification model for network intrusion detection system. Neural Comput. Appl. 32, 12499–12514 (2020)
5. Divekar, A., Parekh, M., Savla, V., Mishra, R., Shirole, M.: Benchmarking datasets for anomaly-based network intrusion detection: KDD CUP 99 alternatives. In: 2018 IEEE 3rd International Conference on Computing, Communication and Security (ICCCS), pp. 1–8. IEEE (2018)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献