An efficient XGBoost–DNN-based classification model for network intrusion detection system
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
http://link.springer.com/content/pdf/10.1007/s00521-020-04708-x.pdf
Reference33 articles.
1. Shone N, Ngoc TN, Phai VD, Shi Q (2018) A deep learning approach to network intrusion detection. IEEE Trans Emerg Top Comput Intell 2:41–50
2. Mabu S, Chen C, Lu N, Shimada K (2011) An Intrusion-detection model based on fuzzy programming. IEEE Trans Syst Man Cybern Syst 41:130–139
3. Garcia-Teodoro P, Diaz-Verdejo J, Macia-Fernandez G, Vázquez E (2009) Anomaly-based network Intrusion detection: techniques, systems and challenges. Comput Secur 28:18–28
4. Li L, Yu Y, Bai S, Hou Y, Chen X (2017) An effective two-step intrusion detection approach based on binary classification and k-NN. IEEE Access 6:12060–12073
5. Ahmad I, Basheri M, Iqbal MJ, Rahim A (2018) Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection. IEEE Access 6:33789–33795
Cited by 169 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep learning infused SIRVD model for COVID-19 prediction: XGBoost-SIRVD-LSTM approach;Frontiers in Medicine;2024-09-03
2. An intelligent security mechanism in mobile Ad-Hoc networks using precision probability genetic algorithms (PPGA) and deep learning technique (Stacked LSTM);Sustainable Computing: Informatics and Systems;2024-09
3. From rule-based models to deep learning transformers architectures for natural language processing and sign language translation systems: survey, taxonomy and performance evaluation;Artificial Intelligence Review;2024-08-29
4. The clinical and imaging data fusion model for single-period cerebral CTA collateral circulation assessment;Journal of X-Ray Science and Technology;2024-08-16
5. Sensitivity analysis of slope stability based on eXtreme gradient boosting and SHapley Additive exPlanations: An exploratory study;Heliyon;2024-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3