1. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2, 1–127 (2009)
2. Besold, T.R., et al.: Neural-symbolic learning and reasoning: a survey and interpretation, November 2017.
https://arxiv.org/pdf/1711.03902.pdf
. Accessed June 2020
3. Castelvecchi, D.: Can we open the black box of AI? Nat. News 538(7623), 20–23 (2016)
4. d’Avila Garcez, A., et al.: Neuralsymbolic learning and reasoning: contributions and challenges. In: McCallum, A., Gabrilovich, E., Guha, R., Murphy, K. (eds.) Proceedings of the AAAI 2015 Propositional Rule Extraction under Background Knowledge 11 Spring Symposium on Knowledge Representation and Reasoning: Integrating Symbolic and Neural Approaches. AAAI Press Technical Report SS-15-03 (2015)
5. Cognitive Technologies;A d’Avila Garcez,2009