1. Ahmed, K., Teso, S., Chang, K.W., Van den Broeck, G., Vergari, A.: Semantic probabilistic layers for neuro-symbolic learning. In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A. (eds.) Advances in Neural Information Processing Systems, vol. 35, pp. 29944–29959. Curran Associates, Inc. (2022)
2. Akcay, S., Ameln, D., Vaidya, A., Lakshmanan, B., Ahuja, N., Genc, U.: Anomalib: a deep learning library for anomaly detection (2022)
3. Amizadeh, S., Palangi, H., Polozov, O., Huang, Y., Koishida, K.: Neuro-symbolic visual reasoning: Disentangling “visual” from “reasoning”. arXiv: abs/2006.11524 (2020)
4. Arabshahi, F., Lee, J., Gawarecki, M., Mazaitis, K., Azaria, A., Mitchell, T.M.: Conversational neuro-symbolic commonsense reasoning. arXiv: abs/2006.10022 (2020)
5. Badreddine, S., d’Avila Garcez, A., Serafini, L., Spranger, M.: Logic tensor networks. Artif. Intell. 303, 103649 (2022). https://doi.org/10.1016/j.artint.2021.103649