Publisher
Springer Nature Switzerland
Reference7 articles.
1. Maharlou, H., Kalhori, S.R.N., Shahbazi, S., Ravangard, R.: Predicting length of stay in intensive care units after cardiac surgery: comparison of artificial neural networks and adaptive neuro-fuzzy system. Healthc. Inform. Res. 24(2), 109–117 (2018)
2. Nanayakkara, S., Fogarty, S., Tremeer, M., Ross, K., Richards, B., Bergmeir, C., Kaye, D.M., et al.: Characterising risk of in-hospital mortality following cardiac arrest using machine learning: a retrospective international registry study. PLoS Med. 15(11), e1002709 (2018)
3. Caicedo-Torres, W., Gutierrez, J.: ISeeU: visually interpretable deep learning for mortality prediction inside the ICU. J. Biomed. Inform. 98, 103269 (2019)
4. Che, Z., Purushotham, S., Khemani, R., Liu, Y.: Interpretable deep models for ICU outcome prediction. In: AMIA Annual Symposium Proceedings, vol. 2016, p. 371. American Medical Informatics Association (2016)
5. Kim, J., Park, Y.R., Lee, J.H., Lee, J.H., Kim, Y.H., Huh, J.W.: Development of a real-time risk prediction model for in-hospital cardiac arrest in critically ill patients using deep learning: retrospective study. JMIR Med. Inform. 8(3), e16349 (2020)