Predicting Length of Stay in Intensive Care Units after Cardiac Surgery: Comparison of Artificial Neural Networks and Adaptive Neuro-fuzzy System

Author:

Maharlou Hamidreza12,Niakan Kalhori Sharareh R.3,Shahbazi Shahrbanoo4,Ravangard Ramin15

Affiliation:

1. Department of Health Services Management, School of Management and Medical Information Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.

2. Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.

3. Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.

4. Shiraz Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

5. Health Human Resources Research Centre, School of Management and Medical Information Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.

Publisher

The Korean Society of Medical Informatics

Subject

Health Information Management,Health Informatics,Biomedical Engineering

Reference38 articles.

1. University of California San Francisco. ICU outcome [Internet]. San Francisco (CA). University of California. c2018. cited at 2018 Apr 1. Available from: https://healthpolicy.ucsf.edu/icu-outcomes

2. Comparison of Regression Methods for Modeling Intensive Care Length of Stay

3. Length of intensive care unit stay following cardiac surgery: is it impossible to find a universal prediction model?

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3