Publisher
Springer Nature Switzerland
Reference32 articles.
1. Agrusta, M., Cenci, C.: Telemedicine and digital narrative medicine for the customization of the diagnostic-therapeutic path at the time of COVID 19 (2021)
2. Boon-Itt, S., Skunkan, Y.: Public perception of the COVID-19 pandemic on Twitter: sentiment analysis and topic modeling study. JMIR Publ. Health Surveill. 6(4), e21978 (2020)
3. Bradley, M.M., Lang, P.J.: Affective norms for English words (anew): instruction manual and affective ratings. Technical report C-1, the center for research in psychophysiology $$\ldots $$ (1999)
4. Chandrasekaran, R., Mehta, V., Valkunde, T., Moustakas, E.: Topics, trends, and sentiments of tweets about the COVID-19 pandemic: temporal infoveillance study. J. Med. Internet Res. 22(10), e22624 (2020)
5. Hidayatullah, A.F., Aditya, S.K., Gardini, S.T., et al.: Topic modeling of weather and climate condition on twitter using latent Dirichlet allocation (LDA). In: IOP Conference Series: Materials Science and Engineering, vol. 482, p. 012033. IOP Publishing (2019)