Public Perception of the COVID-19 Pandemic on Twitter: Sentiment Analysis and Topic Modeling Study

Author:

Boon-Itt SakunORCID,Skunkan YukolpatORCID

Abstract

Background COVID-19 is a scientifically and medically novel disease that is not fully understood because it has yet to be consistently and deeply studied. Among the gaps in research on the COVID-19 outbreak, there is a lack of sufficient infoveillance data. Objective The aim of this study was to increase understanding of public awareness of COVID-19 pandemic trends and uncover meaningful themes of concern posted by Twitter users in the English language during the pandemic. Methods Data mining was conducted on Twitter to collect a total of 107,990 tweets related to COVID-19 between December 13 and March 9, 2020. The analyses included frequency of keywords, sentiment analysis, and topic modeling to identify and explore discussion topics over time. A natural language processing approach and the latent Dirichlet allocation algorithm were used to identify the most common tweet topics as well as to categorize clusters and identify themes based on the keyword analysis. Results The results indicate three main aspects of public awareness and concern regarding the COVID-19 pandemic. First, the trend of the spread and symptoms of COVID-19 can be divided into three stages. Second, the results of the sentiment analysis showed that people have a negative outlook toward COVID-19. Third, based on topic modeling, the themes relating to COVID-19 and the outbreak were divided into three categories: the COVID-19 pandemic emergency, how to control COVID-19, and reports on COVID-19. Conclusions Sentiment analysis and topic modeling can produce useful information about the trends in the discussion of the COVID-19 pandemic on social media as well as alternative perspectives to investigate the COVID-19 crisis, which has created considerable public awareness. This study shows that Twitter is a good communication channel for understanding both public concern and public awareness about COVID-19. These findings can help health departments communicate information to alleviate specific public concerns about the disease.

Publisher

JMIR Publications Inc.

Subject

Public Health, Environmental and Occupational Health,Health Informatics

Cited by 337 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3