1. Barocas, S., Hardt, M., Narayanan, A.: Fairness in machine learning. Nips tutorial 1, 2017 (2017)
2. Bird, S., et al.: Fairlearn: A toolkit for assessing and improving fairness in AI. Microsoft, Tech. Rep. MSR-TR2020–32 (2020)
3. Butryn, B., Chomiak-Orsa, I., Hauke, K., Pondel, M., Siennicka, A.: Application of Machine Learning in medical data analysis illustrated with an example of association rules. Procedia Comput. Sci. 192, 3134–3143 (2021)
4. Kaggle (2023). https://www.kaggle.com/datasets/ictinstitute/utrecht-fairness-recruitmentdataset. Accessed 15 Jul 2023
5. Lambrecht, A., Tucker, C.: Algorithmic bias? An empirical study of apparent gender-based discrimination in the display of STEM career ads. Manage. Sci. 65(7), 2966–2981 (2019)