Scalable Anytime Algorithms for Learning Fragments of Linear Temporal Logic

Author:

Raha RitamORCID,Roy RajarshiORCID,Fijalkow NathanaëlORCID,Neider DanielORCID

Abstract

AbstractLinear temporal logic (LTL) is a specification language for finite sequences (called traces) widely used in program verification, motion planning in robotics, process mining, and many other areas. We consider the problem of learning formulas in fragments of LTL without the $$\mathbf {U}$$ U -operator for classifying traces; despite a growing interest of the research community, existing solutions suffer from two limitations: they do not scale beyond small formulas, and they may exhaust computational resources without returning any result. We introduce a new algorithm addressing both issues: our algorithm is able to construct formulas an order of magnitude larger than previous methods, and it is anytime, meaning that it in most cases successfully outputs a formula, albeit possibly not of minimal size. We evaluate the performances of our algorithm using an open source implementation against publicly available benchmarks.

Publisher

Springer International Publishing

Reference25 articles.

1. Arif, M.F., Larraz, D., Echeverria, M., Reynolds, A., Chowdhury, O., Tinelli, C.: SYSLITE: syntax-guided synthesis of PLTL formulas from finite traces. In: Formal Methods in Computer Aided Design, FMCAD (2020)

2. Baresi, L., Kallehbasti, M.M.P., Rossi, M.: Efficient scalable verification of LTL specifications. In: ICSE (1). pp. 711–721. IEEE Computer Society (2015)

3. Bombara, G., Vasile, C.I., Penedo Alvarez, F., Yasuoka, H., Belta, C.: A Decision Tree Approach to Data Classification using Signal Temporal Logic. In: Hybrid Systems: Computation and Control, HSCC (2016). https://doi.org/10.1145/2883817.2883843

4. Camacho, A., McIlraith, S.A.: Learning interpretable models expressed in linear temporal logic. International Conference on Automated Planning and Scheduling, ICAPS (2019), https://ojs.aaai.org/index.php/ICAPS/article/view/3529

5. Chou, G., Ozay, N., Berenson, D.: Explaining multi-stage tasks by learning temporal logic formulas from suboptimal demonstrations. In: Robotics: Science and Systems (2020). https://doi.org/10.15607/RSS.2020.XVI.097

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning Branching-Time Properties in CTL and ATL via Constraint Solving;Lecture Notes in Computer Science;2024-09-11

2. Scarlet: Scalable Anytime Algorithms for Learning Fragments of Linear Temporal Logic;Journal of Open Source Software;2024-01-09

3. SynthLearn: A Tool for Guided Reactive Synthesis;Lecture Notes in Computer Science;2024

4. LTL Learning on GPUs;Lecture Notes in Computer Science;2024

5. Succinctness of Cosafety Fragments of LTL via Combinatorial Proof Systems;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3