Learning Model Checking and the Kernel Trick for Signal Temporal Logic on Stochastic Processes

Author:

Bortolussi LucaORCID,Gallo Giuseppe Maria,Křetínský JanORCID,Nenzi LauraORCID

Abstract

AbstractWe introduce a similarity function on formulae of signal temporal logic (STL). It comes in the form of a kernel function, well known in machine learning as a conceptually and computationally efficient tool. The corresponding kernel trick allows us to circumvent the complicated process of feature extraction, i.e. the (typically manual) effort to identify the decisive properties of formulae so that learning can be applied. We demonstrate this consequence and its advantages on the task of predicting (quantitative) satisfaction of STL formulae on stochastic processes: Using our kernel and the kernel trick, we learn (i) computationally efficiently (ii) a practically precise predictor of satisfaction, (iii) avoiding the difficult task of finding a way to explicitly turn formulae into vectors of numbers in a sensible way. We back the high precision we have achieved in the experiments by a theoretically sound PAC guarantee, ensuring our procedure efficiently delivers a close-to-optimal predictor.

Publisher

Springer International Publishing

Reference33 articles.

1. Amortila, P., Bellemare, M.G., Panangaden, P., Precup, D.: Temporally extended metrics for markov decision processes. In: SafeAI@AAAI. CEUR Workshop Proceedings, vol. 2301. CEUR-WS.org (2019)

2. Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: A complete quantitative deduction system for the bisimilarity distance on markov chains. Log. Methods Comput. Sci. 14(4) (2018)

3. Bacci, G., Bacci, G., Larsen, K.G., Mardare, R., Tang, Q., van Breugel, F.: Computing probabilistic bisimilarity distances for probabilistic automata. In: CONCUR. LIPIcs, vol. 140, pp. 9:1–9:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

4. Baier, C., Katoen, J.P.: Principles of model checking. MIT press (2008)

5. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: System design of stochastic models using robustness of temporal properties. Theor. Comput. Sci. 587, 3–25 (2015). https://doi.org/10.1016/j.tcs.2015.02.046

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3