1. Barbiero, P., et al.: Interpretable neural-symbolic concept reasoning. In: Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., Scarlett, J. (eds.) International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA. Proceedings of Machine Learning Research, vol. 202, pp. 1801–1825. PMLR (2023)
2. Bombara, G., Vasile, C.I., Penedo, F., Yasuoka, H., Belta, C.: A decision tree approach to data classification using signal temporal logic. In: Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control. HSCC ’16, New York, NY, USA, pp. 1–10. Association for Computing Machinery (2016). https://doi.org/10.1145/2883817.2883843,
3. Bortolussi, L., Gallo, G.M., Kretínský, J., Nenzi, L.: Learning model checking and the kernel trick for signal temporal logic on stochastic processes. In: Fisman, D., Rosu, G. (eds.) TACAS 2022, Part I. LNCS, vol. 13243, pp. 281–300. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99524-9_15
4. Buhrmester, V., Münch, D., Arens, M.: Analysis of explainers of black box deep neural networks for computer vision: a survey. Mach. Learn. Knowl. Extract. 3(4), 966–989 (2021)
5. Chen, C., Li, O., Tao, C., Barnett, A.J., Su, J., Rudin, C.: This looks like that: Deep learning for interpretable image recognition (2019)