Author:
Paulsen Brandon,Wang Chao
Abstract
AbstractThe most scalable approaches to certifying neural network robustness depend on computing sound linear lower and upper bounds for the network’s activation functions. Current approaches are limited in that the linear bounds must be handcrafted by an expert, and can be sub-optimal, especially when the network’s architecture composes operations using, for example, multiplication such as in LSTMs and the recently popularSwishactivation. The dependence on an expert prevents the application of robustness certification to developments in the state-of-the-art of activation functions, and furthermore the lack of tightness guarantees may give a false sense of insecurity about a particular model. To the best of our knowledge, we are the first to consider the problem ofautomaticallysynthesizingtightlinear bounds for arbitrary n-dimensional activation functions. We propose the first fully automated method that achieves tight linear bounds while only leveraging the mathematical definition of the activation function itself. Our method leverages an efficient heuristic technique to synthesize bounds that are tight andusually sound, and then verifies the soundness (and adjusts the bounds if necessary) using the highly optimized branch-and-bound SMT solver,dReal. Even though our method depends on an SMT solver, we show that the runtime is reasonable in practice, and, compared with state of the art, our method often achieves 2-5X tighter final output bounds and more than quadruple certified robustness.
Publisher
Springer International Publishing
Reference48 articles.
1. Eran. https://github.com/eth-sri/eran (2021)
2. Alzantot, M., Sharma, Y., Elgohary, A., Ho, B.J., Srivastava, M., Chang, K.W.: Generating natural language adversarial examples. arXiv preprint arXiv:1804.07998 (2018)
3. Balunović, M., Baader, M., Singh, G., Gehr, T., Vechev, M.: Certifying geometric robustness of neural networks. Advances in Neural Information Processing Systems 32 (2019)
4. Baluta, T., Shen, S., Shinde, S., Meel, K.S., Saxena, P.: Quantitative verification of neural networks and its security applications. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. pp. 1249–1264 (2019)
5. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A.V., Criminisi, A.: Measuring neural net robustness with constraints. In: Annual Conference on Neural Information Processing Systems. pp. 2613–2621 (2016)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献