1. S. Abadeh, P. Esfahani, D. Kuhn, Distributionally robust logistic regression, in Advances in Neural Information Processing Systems (NeurIPS) (2015), pp. 1576–1584
2. A. Aghajan, B. Touri, Distributed optimization over dependent random networks (2020). arXiv preprint arXiv:2010.01956
3. S.A. Alghunaim, E.K. Ryu, K. Yuan, A.H. Sayed, Decentralized proximal gradient algorithms with linear convergence rates. IEEE Trans. Autom. Control 66(6), 2787–2794 (2020)
4. D. Alistarh, D. Grubic, J. Li, R. Tomioka, M. Vojnovic, QSGD: communication-efficient SGD via gradient quantization and encoding, in Advances in Neural Information Processing Systems (2017), pp. 1709–1720
5. Z. Allen-Zhu, Katyusha: the first direct acceleration of stochastic gradient methods, in Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017 (ACM, New York, 2017), pp. 1200–1205. newblock arXiv:1603.05953