Trusted artificial intelligence

Author:

Avetisyana A. I.1

Affiliation:

1. Ivannikov Institute for System Programming of the Russian Academy of Sciences

Abstract

In this paper we discuss the problem of creating trusted artificial intelligence (AI) technologies. Modern AI is based on machine learning and neural networks and is vulnerable to biases and errors. Efforts are made to establish standards for the development of trusted AI technologies, but they have not yet succeeded. AI technologies trust can only be achieved with the appropriate scientific and technological base and corresponding tools and techniques for countering attacks. We present the ISP RAS Trusted AI Research Center results and propose a work model that can ensure technological independence and long-term sustainable development in this area.

Publisher

The Russian Academy of Sciences

Reference35 articles.

1. Volume of data/information created, captured, copied, and consumed worldwide from 2010 to 2020, with forecasts from 2021 to 2025. https://www.statista.com/statistics/871513/worldwide-data-created/

2. ГОСТ Р 56939-2016 “Защита информации. Разработка безопасного программного обеспечения. Общие требования”. GOST R 56939-2016 “Information protection. Secure software development. General requirements”. https://docs.cntd.ru/document/1200135525

3. Regulation (EU) 2019/881 of the European Parliament and of the Council on ENISA (the European Union Agency for Cybersecurity) and on information and communications technology cybersecurity certification and repealing Regulation (EU) No 526/2013 (Cybersecurity Act). https://eur-lex.europa.eu/eli/reg/2019/881/oj

4. Постановление президиума Российской академии наук “О мерах по развитию системного программирования как ключевого направления противодействия киберугрозам”. Act of The Presidium of RAS. On supporting development of system programming as a key direction for countering cyberthreats. https://www.ras.ru/presidium/documents/directions.aspx?ID=1f5522e9-ff25-4af0-a49a-6a5675525597

5. Приказ Минобрнауки России № 118 от 24 февраля 2021 года. Order of the Ministry of Science and Education of Russia no. 118 dated February 24, 2021. https://vak.minobrnauki.gov.ru/uploader/loader?type=1&name=91506173002&f=7892

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3