1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2016), pp. 265–283 (2016)
2. Ayinde, B.O., Zurada, J.M.: Building efficient ConvNets using redundant feature pruning. arXiv:1802.07653 (2018)
3. Babaeizadeh, M., Smaragdis, P., Campbell, R.H.: NoiseOut: a simple way to prune neural networks. arXiv:1611.06211 (2016)
4. Chen, C., Seff, A., Kornhauser, A., Xiao, J.: DeepDriving: learning affordance for direct perception in autonomous driving. In: IEEE International Conference on Computer Vision, pp. 2722–2730 (2015)
5. Chen, Y.H., Emer, J., Sze, V.: Eyeriss: a spatial architecture for energy-efficient dataflow for convolutional neural networks. ACM SIGARCH Comput. Architect. News 44–3, 367–379 (2016)