Author:
Zhdanov Vladislav,Grakovski Alexander
Publisher
Springer International Publishing
Reference8 articles.
1. Powrie, H.E.G., Fisher, C.E.: Engine health monitoring: Towards total prognostics. In: 1999 IEEE Aerospace Conference. Proceedings (Cat. No.99TH8403), pp. 11–20, vol. 3. IEEE, Snowmass at Aspen, CO, USA (1999). https://doi.org/10.1109/AERO.1999.789759
2. Jaw, L.C., Lee, Y.-J.: Engine diagnostics in the eyes of machine learning. In: Volume Ceramics; Controls, Diagnostics and Instrumentation; Education; Manufacturing Materials and Metallurgy, p. V006T06A029. American Society of Mechanical Engineers, Düsseldorf, Germany (2014). https://doi.org/10.1115/GT2014-27088
3. Raphael, L., Jerome, L.: Turbofan exhaust gas temperature forecasting and performance monitoring with a neural network model (2022). https://www.researchgate.net/publication/363350797_Turbofan_exhaust_gas_temperature_forecasting_and_performance_monitoring_with_a_neural_network_model. Last accessed 28 November 2022
4. Fentaye, B.: Gilani, kyprianidis: a review on gas turbine gas-path diagnostics: state-of-the-art methods. Challenges and Opportunities. Aerospace. 6, 83 (2019). https://doi.org/10.3390/aerospace6070083
5. Falconer, K.J.: Fractal Geometry - Mathematical Foundations and Applications. John Wiley and Sons, United States (2003)