Author:
Sagar Pramod Kumar,Joshi Prakash,Kushwaha Bikender,Yadav Satya Prakash,Al-Turjman Fadi
Publisher
Springer Nature Switzerland
Reference21 articles.
1. Abinash, M. D., & Velmurugan, J. ENHANCING THE ACCURACY OF SKIN DISEASE PREDICTION USING IMAGE SUPPORT VECTOR MACHINES TECHNIQUE OVER RANDOM FOREST.
2. Akinnuwesi, B. A., Olayanju, K. A., Aribisala, B. S., Fashoto, S. G., Mbunge, E., Okpeku, M., & Owate, P. (2023). Application of support vector machine algorithm for early differential diagnosis of prostate cancer. Data Science and Management, 6(1), 1–12.
3. Almotairi, S., Badr, E., Abdul Salam, M., & Ahmed, H. (2023). Breast Cancer Diagnosis Using a Novel Parallel Support Vector Machine with Harris Hawks Optimization. Mathematics, 11(14), 3251.
4. Ezhilarasi, K. K., & Rex, M. J. (2014). Reliable and energy-saving forwarding technique for wireless sensor networks using multipath routing. SSRG International Journal of Computer Science and Engineering, 1(9), 11–15.
5. Houssein, E. H., Hassan, H. N., Samee, N. A., & Jamjoom, M. M. (2023). A Novel Hybrid Runge Kutta Optimizer with Support Vector Machine on Gene Expression Data for Cancer Classification. Diagnostics, 13(9), 1621.