Forest Management and Tree-Ring Isotopes

Author:

Marshall John D.,Brooks J. Renée,Talhelm Alan F.

Abstract

AbstractForest management can be improved by the mechanistic understanding that tree-ring stable isotopes provide. Key management tools include genetic selection, competing vegetation control, thinning, and fertilization. These tools frequently change environmental conditions and physiological processes, such as photosynthesis, stomatal conductance, water uptake, and nitrogen cycling, which may leave isotopic signatures in tree-rings, providing detailed responses to management over decadal time periods. While data sets remain small, some trends have emerged from previous forest management studies using stable isotopes. Genotype selection sometimes shows isotopic evidence of maladaptation, especially in the presence of climate change. Competition control and thinning have different isotopic reactions depending on the dryness of the site; they generally obtain different responses depending on whether competition is primarily for aboveground (light) or belowground (water and nutrient) resources. Fertilization responses recorded in tree rings appear to be driven by initial increases in photosynthesis, and later by increases in leaf area index. Tree-ring isotopic applications can provide key insights to a much broader range of silvicultural objectives than included here, and we encourage their application in large-scale silvicultural experiments to reduce uncertainties and explain mechanisms of response. In future work, we suggest that management studies wishing to utilize tree-ring stable isotopic analysis include key ancillary measurements, especially leaf nitrogen concentrations, leaf-area index, xylemwater sources, and canopy temperature, to help support interpretation of the isotopic data.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3