Tree-ring isotopic composition reveals intraspecific variation in water use efficiency of Pinus pinaster Ait. provenances grown in common gardens

Author:

Antonucci SerenaORCID,Marshall John,Santopuoli Giovanni,Marchetti Marco,Tognetti Roberto

Abstract

Abstract Key message The physiological responses expressed by variation in carbon and oxygen stable isotopes and iWUE in five provenances of maritime pine grown in four common gardens were primarily determined by genotype differences in phenotypic plasticity and secondarily by genotype. Abstract Given the impacts of climate change on forest resources and considering the slowness of evolutionary processes in trees, a need arises to understand the interplay between tree species adaptation to climate, genetic variation, and their impact on tree growth and productivity. Broadening knowledge of the capacity of tree populations to respond to climate-related disturbances is a prerequisite for the development of resilience strategies, including assisted migration and climate-smart forestry. This study tests the physiological ability of different maritime pine provenances, comparing Mediterranean (Corsica, Sardinia, and Tuscany) and Atlantic (Portugal) provenances, to adapt to progressively drier conditions that have occurred in the last thirty years. Four provenance trials with randomized blocks of the five maritime pine provenances were used as test sites in Sardinia (Italy). Wood cores were collected from the 40-year-old plants. Cores were split into five-year segments to determine provenance-related variations in carbon and oxygen stable isotopes and provide information on long-term patterns in intrinsic water use efficiency (iWUE). The provenance × site interaction was the most important source of variation, meaning that the genotypes responded differently to the planting sites. Considering the main effects, both genotype and environmental conditions at the planting sites influenced stable isotope composition in tree rings. This suggests that iWUE was determined by phenotypic plasticity that differed among genotypes. In contrast, provenance responses were stable with time, and the provenance × site interaction was stable across time periods. These findings suggest that provenance selection to improve iWUE in maritime pine may need to consider site conditions but point more to soil conditions than to climate. In any case, they limit our ability to recommend maritime pine provenances based on iWUE until the missing site factors can be identified.

Funder

Bilateral Project MAECI Italy-Sweden

Università degli Studi del Molise

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Ecology,Physiology,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3