Author:
Habekost Jan-Gerrit,Strahl Erik,Allgeuer Philipp,Kerzel Matthias,Wermter Stefan
Abstract
AbstractThe paper introduces CycleIK, a neuro-robotic approach that wraps two novel neuro-inspired methods for the inverse kinematics (IK) task—a Generative Adversarial Network (GAN), and a Multi-Layer Perceptron architecture. These methods can be used in a standalone fashion, but we also show how embedding these into a hybrid neuro-genetic IK pipeline allows for further optimization via sequential least-squares programming (SLSQP) or a genetic algorithm (GA). The models are trained and tested on dense datasets that were collected from random robot configurations of the new Neuro-Inspired COLlaborator (NICOL), a semi-humanoid robot with two redundant 8-DoF manipulators. We utilize the weighted multi-objective function from the state-of-the-art BioIK method to support the training process and our hybrid neuro-genetic architecture. We show that the neural models can compete with state-of-the-art IK approaches, which allows for deployment directly to robotic hardware. Additionally, it is shown that the incorporation of the genetic algorithm improves the precision while simultaneously reducing the overall runtime.
Publisher
Springer Nature Switzerland
Reference20 articles.
1. Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence);OA Aguilar,2011
2. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, pp. 2623–2631. Association for Computing Machinery, New York, NY, USA (2019)
3. Ames, B., Morgan, J., Konidaris, G.: IKFlow: generating diverse inverse kinematics solutions. IEEE Robot. Autom. Lett. 7(3), 7177–7184 (2022)
4. Ardizzone, L., Kruse, J., Rother, C., Kűthe, U.: Analyzing inverse problems with invertible neural networks. In: International Conference on Learning Representations (2019)
5. Beeson, P., Ames, B.: TRAC-IK: an open-source library for improved solving of generic inverse kinematics. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 928–935 (2015)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献