Probabilistic Program Verification via Inductive Synthesis of Inductive Invariants
Author:
Batz KevinORCID, Chen MingshuaiORCID, Junges SebastianORCID, Kaminski Benjamin LucienORCID, Katoen Joost-PieterORCID, Matheja ChristophORCID
Abstract
AbstractEssential tasks for the verification of probabilistic programs include bounding expected outcomes and proving termination in finite expected runtime. We contribute a simple yet effective inductive synthesis approach for proving such quantitative reachability properties by generating inductive invariants on source-code level. Our implementation shows promise: It finds invariants for (in)finite-state programs, can beat state-of-the-art probabilistic model checkers, and is competitive with modern tools dedicated to invariant synthesis and expected runtime reasoning.
Publisher
Springer Nature Switzerland
Reference56 articles.
1. Abate, A., Giacobbe, M., Roy, D.: Learning probabilistic termination proofs. In: CAV (2). Lecture Notes in Computer Science, vol. 12760, pp. 3–26. Springer (2021) 2. Agrawal, S., Chatterjee, K., Novotný, P.: Lexicographic ranking supermartingales. PACMPL 2(POPL), 34:1–34:32 (2018) 3. de Alfaro, L., Kwiatkowska, M.Z., Norman, G., Parker, D., Segala, R.: Symbolic model checking of probabilistic processes using MTBDDs and the Kronecker representation. In: TACAS. Lecture Notes in Computer Science, vol. 1785, pp. 395–410. Springer (2000) 4. Alur, R., Bodík, R., Dallal, E., Fisman, D., Garg, P., Juniwal, G., Kress-Gazit, H., Madhusudan, P., Martin, M.M.K., Raghothaman, M., Saha, S., Seshia, S.A., Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In: Dependable Software Systems Engineering, vol. 40, pp. 1–25. IOS Press (2015) 5. Andriushchenko, R., Ceska, M., Junges, S., Katoen, J.: Inductive synthesis for probabilistic programs reaches new horizons. In: TACAS (1). Lecture Notes in Computer Science, vol. 12651, pp. 191–209. Springer (2021)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|