1. Alvarez-Melis, D., Jaakkola, T.S.: On the robustness of interpretability methods. In: Proceedings of the 2018 ICML Workshop on Human Interpretability in Machine Learning, pp. 66–71 (2018)
2. Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M., Rudin, C.: Learning certifiably optimal rule lists. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 35–44 (2017)
3. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine Bias - ProPublica (2016). www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing. Accessed 20 June 2023
4. Bénard, C., Biau, G., da Veiga, S., Scornet, E.: Interpretable random forests via rule extraction. In: Proceedings of the 24th International Conference on Artificial Intelligence and Statistics, pp. 937–945 (2021)
5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)