1. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)
2. Bergstra, J., Yamins, D., Cox, D.: Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. In: International Conference on Machine Learning, pp. 115–123 (2013)
3. Bielak, P., Tagowski, K., Falkiewicz, M., Kajdanowicz, T., Chawla, N.V.: Fildne: a framework for incremental learning of dynamic networks embeddings (2020)
4. Chami, I., Abu-El-Haija, S., Perozzi, B., Ré, C., Murphy, K.: Machine learning on graphs: A model and comprehensive taxonomy. arXiv preprint arXiv:2005.03675 (2020)
5. Chen, C., et al.: Unsupervised adversarial graph alignment with graph embedding. CoRR abs/1907.00544 (2019). http://arxiv.org/abs/1907.00544