Publisher
Springer Nature Switzerland
Reference19 articles.
1. Bielak, P., Tagowski, K., Falkiewicz, M., Kajdanowicz, T., Chawla, N.V.: FILDNE: a framework for incremental learning of dynamic networks embeddings. Knowl.-Based Syst. 236, 107453 (2022)
2. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)
3. Goyal, P., Chhetri, S.R., Canedo, A.: dyngraph2vec: capturing network dynamics using dynamic graph representation learning. Knowl.-Based Syst. 187, 104816 (2020)
4. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)
5. Hu, W., Bansal, R., Cao, K., Rao, N., Subbian, K., Leskovec, J.: Learning backward compatible embeddings. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (2022)