1. Schuh, G., et al.: Prediction of workpiece quality: an application of machine learning in manufacturing industry. In: Meghanathann, N., Nagamalai, D. (eds.) Proceedings of 6th International Conference on Computer Science, Engineering and Information Technology (CSEIT-2019), vol. 9. pp. 189–202. Aircc, Chennai (2019)
2. Huber, S., Wiemer, H., Schneider, D., Ihlenfeldt, S.: DMME: data mining methodology for engineering applications – a holistic extension to the CRISP-DM. In: Teti, R., D’Addona, M. (eds.) 12th CIRP Conference on Intelligent Computation in Manufacturing Engineering, vol. 79, pp. 403–408. Elsevier, Napoly (2018)
3. Schäfer, F., Zeiselmair, C., Becker, J., Otten, H.: Synthesizing CRISP-DM and quality management: a data mining approach for production processes. In: Proceedings of IEEE International Conference on Technology Management, Operations and Decisions (ICTMOD), vol. 1, pp. 190–195. IEEE, Marrakesh (2019)
4. Wang, Z., Liu, P., Xiao, Y., Cui, X., Hu, Z., Chen, L.: A data-driven approach for process optimization of metallic additive manufacturing under uncertainty. J. Manuf. Sci. Eng. 141(8), 1–14 (2019)
5. Wieland, U., Fischer, M.: Zur methodischen Vorbereitung von Data-Mining-Projekten unter Verwendung von CRISP-DM im Kontext diskreter Produktionsprozesse. In: Baars, H. (ed.) Tagungsband zum fünften Workshop der GI-Fachgruppe Business Intelligence, pp. 47–63, CEUR Workshop Proceedings, Freiberg (2013)