Author:
Bhavana Prasad,Padmanabhan Vineet
Publisher
Springer International Publishing
Reference14 articles.
1. Tan, W., Chang, S., Fong, L.L., Li, C., Wang, Z., Cao, L.: Matrix factorization on GPUs with memory optimization and approximate computing. In: ICPP (2018)
2. Mackey, L.W., Jordan, M.I., Talwalkar, A.: Divide-and-conquer matrix factorization. In: NIPS, pp. 1134–1142 (2011)
3. Zhang, Y., Zhang, M., Liu, Y., Ma, S., Feng, S.: Localized matrix factorization for recommendation based on matrix block diagonal forms. In: WWW, pp. 1511–1520. ACM (2013)
4. Du, R., Kuang, D., Drake, B., Park, H.: DC-NMF: non-negative matrix factorization based on divide-and-conquer for fast clustering and topic modeling. J. Glob. Optim. 68(4), 777–798 (2017)
5. Koitka, S., Friedrich, C.M.: nmfgpu4R: GPU-accelerated computation of the non-negative matrix factorization using cuda capable hardware. R J. 8(2), 382–392 (2016)