Matrix Factorization on GPUs with Memory Optimization and Approximate Computing

Author:

Tan Wei1,Chang Shiyu2,Fong Liana2,Li Cheng3,Wang Zijun2,Cao LiangLiang4

Affiliation:

1. Citadel, Chicago, Illinois

2. IBM Research, Yorktown Heights, New York

3. University of Illinois at Urbana-Champaign, Urbana, Illinois

4. HelloVera.AI, New York, New York

Publisher

ACM

Reference39 articles.

1. Jimmy Ba and Rich Caruana. 2014. Do Deep Nets Really Need to be Deep?. In NIPS. 2654--2662. http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf Jimmy Ba and Rich Caruana. 2014. Do Deep Nets Really Need to be Deep?. In NIPS. 2654--2662. http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf

2. Machine learning at the limit

3. Wei-Sheng Chin Yong Zhuang Yu-Chin Juan and Chih-Jen Lin. 2015. A learning-rate schedule for stochastic gradient methods to matrix factorization. In PAKDD. Springer. Wei-Sheng Chin Yong Zhuang Yu-Chin Juan and Chih-Jen Lin. 2015. A learning-rate schedule for stochastic gradient methods to matrix factorization. In PAKDD. Springer.

4. Adam Coates Brody Huval Tao Wang David Wu Bryan Catanzaro and Ng Andrew. 2013. Deep learning with COTS HPC systems. In ICML. 1337--1345. Adam Coates Brody Huval Tao Wang David Wu Bryan Catanzaro and Ng Andrew. 2013. Deep learning with COTS HPC systems. In ICML. 1337--1345.

5. Henggang Cui James Cipar Qirong Ho Jin Kyu Kim Seunghak Lee Abhimanu Kumar Jinliang Wei Wei Dai Gregory R. Ganger Phillip B. Gibbons Garth A. Gibson and Eric P. Xing. 2014. Exploiting Bounded Staleness to Speed Up Big Data Analytics. In USENIX ATC. 37--48. Henggang Cui James Cipar Qirong Ho Jin Kyu Kim Seunghak Lee Abhimanu Kumar Jinliang Wei Wei Dai Gregory R. Ganger Phillip B. Gibbons Garth A. Gibson and Eric P. Xing. 2014. Exploiting Bounded Staleness to Speed Up Big Data Analytics. In USENIX ATC. 37--48.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance and accuracy predictions of approximation methods for shortest-path algorithms on GPUs;Parallel Computing;2022-09

2. Matrix factorization of large scale data using multistage matrix factorization;Applied Intelligence;2020-11-25

3. Identifying and (automatically) remedying performance problems in CPU/GPU applications;Proceedings of the 34th ACM International Conference on Supercomputing;2020-06-29

4. Large-scale Distributive Matrix Collaborative Filtering for Recommender System;Proceedings of the 2020 International Conference on Computing, Networks and Internet of Things;2020-04-24

5. Diogenes;Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis;2019-11-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3