Modelling and Numerical Simulation of Binary Droplet Collisions Under Extreme Conditions

Author:

Potyka Johanna,Kromer Johannes,Liu Muyuan,Schulte Kathrin,Bothe Dieter

Abstract

AbstractThe complexity of binary droplet collisions strongly increases in case of immiscible liquids with the occurrence of triple lines or for high energetic collisions, where strong rim instabilities lead to the spattering of satellite droplets. To cope with such cases, the Volume of Fluid method is extended by an efficient interface reconstruction, also applicable to multi-material cells of arbitrary configuration, as well as an enhanced continuous surface stress model for accurate surface force computations, also applicable to thin films. For collisions of fully wetting liquids, excellent agreement to experimental data is achieved in different collision regimes. High-resolution simulations predict droplet collisions in the spattering regime and provide detailed insights into the evolution of the rim instability. Another challenge is the numerical prediction of the collision outcome in the bouncing or coalescence region, where the rarefied gas dynamics in the thin gas film determines the collision result. To this end, an important step forward became possible by modelling the pressure in the gas film. With the introduction of an interior collision plane within the flow domain, it is now possible to simulate droplet collisions with gas film thickness reaching the physically relevant length scale.

Publisher

Springer International Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards DNS of Droplet-Jet Collisions of Immiscible Liquids with FS3D;High Performance Computing in Science and Engineering '22;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3