An experimental study of binary collisions of miscible droplets with non-identical viscosities

Author:

Al-Dirawi Karrar H.,Bayly Andrew E.

Abstract

Abstract The dynamics of binary collisions of equi-diameter droplets with non-identical viscosities have been investigated experimentally and compared to previously generated data from identical droplet collisions (Al-Dirawi and Bayly in Phys Fluids 31(2):027105, 2019). Three hydroxypropyl methylcellulose (HPMC) aqueous solutions, 2%, 4%, and 8% HPMC, were used to generate the droplets of different viscosities, 2.8, 8.2, and 28.4 mPa s, respectively. High-speed imaging techniques were applied to observe and capture the collision outcomes. Collision outcomes were characterised and regime maps were generated. The non-identical viscosity droplet collisions produced regime maps with well-defined boundaries which are comparable in shape to the conventional regime maps of identical droplet collisions. The boundaries of the bouncing and reflexive separation regimes of the non-identical collisions show intermediate position between the identical cases of the low and the high viscosity droplets. However, the boundary of the stretching separation regimes of the non-identical collisions showed good agreement with the boundary of the identical case of the lower viscosity droplet. Moreover, the ability of models developed for predicting the regimes boundaries of collisions of identical viscosity droplets was assessed for the non-identical collisions. They proved capable in the non-identical cases, and the changes in adjustable parameters were consistent with the underlying physical basis of the models. Graphic abstract

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanics of Materials,Computational Mechanics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3