Abstract
AbstractWe explore the Collatz conjecture and its variants through the lens of termination of string rewriting. We construct a rewriting system that simulates the iterated application of the Collatz function on strings corresponding to mixed binary–ternary representations of positive integers. Termination of this rewriting system is equivalent to the Collatz conjecture. To show the feasibility of our approach in proving mathematically interesting statements, we implement a minimal termination prover that uses the automated method of matrix/arctic interpretations and we perform experiments where we obtain proofs of nontrivial weakenings of the Collatz conjecture. Finally, we adapt our rewriting system to show that other open problems in mathematics can also be approached as termination problems for relatively small rewriting systems. Although we do not succeed in proving the Collatz conjecture, we believe that the ideas here represent an interesting new approach.
Publisher
Springer International Publishing
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献