Passive Concept Drift Handling via Momentum Based Robust Soft Learning Vector Quantization
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-19642-4_20
Reference24 articles.
1. Agrawal R, Imielinski T, Swami A (1993) Database mining: a performance perspective. IEEE Trans Knowl Data Eng 5(6):914–925
2. Augenstein C, Spangenberg N, Franczyk B (2017) Applying machine learning to big data streams: an overview of challenges. In: 2017 IEEE 4th international conference on soft computing machine intelligence (ISCMI), pp 25–29
3. Bifet A, Gavaldà R (2007) Learning from time-changing data with adaptive windowing. In: Proceedings of the seventh SIAM international conference on data mining, 26–28 April 2007, Minneapolis, Minnesota, USA, pp 443–448
4. Bifet A, Gavaldà R (2009) Adaptive learning from evolving data streams. In: Adams NM, Robardet C, Siebes A, Boulicaut J (eds) Advances in intelligent data analysis VIII, 8th international symposium on intelligent data analysis, IDA 2009, Lyon, France, 31 August–2 September 2009, Proceedings. Lecture notes in computer science, vol 5772. Springer, pp 249–260
5. Bifet A, Zhang J, Fan W, He C, Zhang J, Qian J, Holmes G, Pfahringer B (2017) Extremely fast decision tree mining for evolving data streams. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, Halifax, NS, Canada, 13–17 August 2017. ACM, pp 1733–1742
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Unsupervised concept drift detection method based on robust random cut forest;International Journal of Machine Learning and Cybernetics;2023-06-12
2. A Sparse Online Approach for Streaming Data Classification via Prototype-Based Kernel Models;Neural Processing Letters;2022-01-16
3. Online Learning on Non-Stationary Data Streams for Image Recognition using Deep Embeddings;2021 IEEE Symposium Series on Computational Intelligence (SSCI);2021-12-05
4. Dimensionality reduction in the context of dynamic social media data streams;Evolving Systems;2021-08-13
5. Supervised learning in the presence of concept drift: a modelling framework;Neural Computing and Applications;2021-04-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3