Dimensionality reduction in the context of dynamic social media data streams

Author:

Heusinger Moritz,Raab Christoph,Schleif Frank-Michael

Abstract

AbstractIn recent years social media became an important part of everyday life for many people. A big challenge of social media is, to find posts, that are interesting for the user. Many social networks like Twitter handle this problem with so-called hashtags. A user can label his own Tweet (post) with a hashtag, while other users can search for posts containing a specified hashtag. But what about finding posts which are not labeled by the creator? We provide a way of completing hashtags for unlabeled posts using classification on a novel real-world Twitter data stream. New posts will be created every second, thus this context fits perfectly for non-stationary data analysis. Our goal is to show, how labels (hashtags) of social media posts can be predicted by stream classifiers. In particular, we employ random projection (RP) as a preprocessing step in calculating streaming models. Also, we provide a novel real-world data set for streaming analysis called NSDQ with a comprehensive data description. We show that this dataset is a real challenge for state-of-the-art stream classifiers. While RP has been widely used and evaluated in stationary data analysis scenarios, non-stationary environments are not well analyzed. In this paper, we provide a use case of RP on real-world streaming data, especially on NSDQ dataset. We discuss why RP can be used in this scenario and how it can handle stream-specific situations like concept drift. We also provide experiments with RP on streaming data, using state-of-the-art stream classifiers like adaptive random forest and concept drift detectors. Additionally, we experimentally evaluate an online principal component analysis (PCA) approach in the same fashion as we do for RP. To obtain higher dimensional synthetic streams, we use random Fourier features (RFF) in an online manner which allows us, to increase the number of dimensions of low dimensional streams.

Funder

Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie

European Social Fund

Hochschule für angewandte Wissenschaften Würzburg-Schweinfurt

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Science Applications,Modelling and Simulation,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3