Resolve Intraoperative Brain Shift as Imitation Game
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-01045-4_15
Reference16 articles.
1. Bayer, S., Maier, A., Ostermeier, M., Fahrig, R.: Intraoperative imaging modalities and compensation for brain shift in tumor resection surgery. Int. J. Biomed. Imaging 2017 (2017)
2. Lecture Notes in Computer Science;I Reinertsen,2004
3. Reinertsen, I., Lindseth, F., Unsgaard, G., Collins, D.L.: Clinical validation of vessel-based registration for correction of brain-shift. Med. Image Anal. 11(6), 673–684 (2007)
4. Farnia, P., Ahmadian, A., Khoshnevisan, A., Jaberzadeh, A., Serej, N.D., Kazerooni, A.F.: An efficient point based registration of intra-operative ultrasound images with MR images for computation of brain shift; a phantom study. In: IEEE EMBC 2011, pp. 8074–8077, August 2011
5. Pennec, X., Cachier, P., Ayache, N.: Tracking brain deformations in time-sequences of 3D US images. Pattern Recognit. Lett. 24(4–5), 801–813 (2003)
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. D2BGAN: Dual Discriminator Bayesian Generative Adversarial Network for Deformable MR–Ultrasound Registration Applied to Brain Shift Compensation;Diagnostics;2024-06-21
2. Joint Progressive and Coarse-to-Fine Registration of Brain MRI via Deformation Field Integration and Non-Rigid Feature Fusion;IEEE Transactions on Medical Imaging;2022-10
3. Demystification of Deep Learning-Driven Medical Image Processing and Its Impact on Future Biomedical Applications;Research Anthology on Improving Medical Imaging Techniques for Analysis and Intervention;2022-09-09
4. Modality-agnostic self-supervised deep feature learning and fast instance optimisation for multimodal fusion in ultrasound-guided interventions;Computer Methods and Programs in Biomedicine;2021-11
5. Deep action learning enables robust 3D segmentation of body organs in various CT and MRI images;Scientific Reports;2021-02-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3