D2BGAN: Dual Discriminator Bayesian Generative Adversarial Network for Deformable MR–Ultrasound Registration Applied to Brain Shift Compensation

Author:

Rahmani Mahdiyeh12,Moghaddasi Hadis12,Pour-Rashidi Ahmad3,Ahmadian Alireza12,Najafzadeh Ebrahim45,Farnia Parastoo12ORCID

Affiliation:

1. Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences (TUMS), Tehran 1461884513, Iran

2. Research Center for Biomedical Technologies and Robotics (RCBTR), Advanced Medical Technologies and Equipment Institute (AMTEI), Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran 1419733141, Iran

3. Department of Neurosurgery, Sina Hospital, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran 11367469111, Iran

4. Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran 1417466191, Iran

5. Department of Molecular Imaging, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran

Abstract

During neurosurgical procedures, the neuro-navigation system’s accuracy is affected by the brain shift phenomenon. One popular strategy is to compensate for brain shift using intraoperative ultrasound (iUS) registration with pre-operative magnetic resonance (MR) scans. This requires a satisfactory multimodal image registration method, which is challenging due to the low image quality of ultrasound and the unpredictable nature of brain deformation during surgery. In this paper, we propose an automatic unsupervised end-to-end MR–iUS registration approach named the Dual Discriminator Bayesian Generative Adversarial Network (D2BGAN). The proposed network consists of two discriminators and a generator optimized by a Bayesian loss function to improve the functionality of the generator, and we add a mutual information loss function to the discriminator for similarity measurements. Extensive validation was performed on the RESECT and BITE datasets, where the mean target registration error (mTRE) of MR–iUS registration using D2BGAN was determined to be 0.75 ± 0.3 mm. The D2BGAN illustrated a clear advantage by achieving an 85% improvement in the mTRE over the initial error. Moreover, the results confirmed that the proposed Bayesian loss function, rather than the typical loss function, improved the accuracy of MR–iUS registration by 23%. The improvement in registration accuracy was further enhanced by the preservation of the intensity and anatomical information of the input images.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3