Architecting AI Deployment: A Systematic Review of State-of-the-Art and State-of-Practice Literature
Author:
Publisher
Springer International Publishing
Link
https://link.springer.com/content/pdf/10.1007/978-3-030-67292-8_2
Reference38 articles.
1. Amershi, S., et al.: Software engineering for machine learning: a case study. In: 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pp. 291–300. IEEE, May 2019
2. Bernardi, L., Mavridis, T., Estevez, P.: 150 successful machine learning models: 6 lessons learned at booking. com. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1743–1751, July 2019
3. Sculley, D., et al.: Hidden technical debt in machine learning systems. In: Advances in Neural Information Processing Systems, pp. 2503–2511 (2015)
4. Dahlmeier, D.: On the challenges of translating NLP research into commercial products. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 92–96, July 2017
5. Crankshaw, D., Gonzalez, J., Bailis, P.: Research for practice: prediction-serving systems. Commun. ACM 61(8), 45–49 (2018)
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Assessment Of the Relevance of Best Practices in The Development of Medical R&D Projects Based on Machine Learning;International Conference on Information Systems Development;2024-09-09
2. Towards defining industry 5.0 vision with intelligent and softwarized wireless network architectures and services: A survey;Journal of Network and Computer Applications;2024-03
3. ML-Enabled Systems Model Deployment and Monitoring: Status Quo and Problems;Lecture Notes in Business Information Processing;2024
4. Security for Machine Learning-based Software Systems: a survey of threats, practices and challenges;ACM Computing Surveys;2023-12-28
5. Responsible AI Pattern Catalogue: A Collection of Best Practices for AI Governance and Engineering;ACM Computing Surveys;2023-10-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3