1. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, (2017). PMLR
2. Sheller, M.J., Reina, G.A., Edwards, B., Martin, J., Bakas, S.: Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation. In: International Workshop on Brain Lesion (BrainLes), in conjunction with MICCAI (2018)
3. Rieke, N., Hancox, J., Li, W., et al.: The future of digital health with federated learning. NPJ Digit. Med. 3(1) (2020)
4. Konečný, J., McMahan, H.B., Yu, F.X. Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency. In: NIPS Workshop on Private Multi-Party Machine Learning (2016)
5. Nishio, T., Yonetani, R.: Client selection for federated learning with heterogeneous resources in mobile edge. In: IEEE International Conference on Communications (2019)