Multi-institutional Deep Learning Modeling Without Sharing Patient Data: A Feasibility Study on Brain Tumor Segmentation
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-11723-8_9
Reference24 articles.
1. Bakas, S., et al.: In vivo detection of EGFRvIII in glioblastoma via perfusion magnetic resonance imaging signature consistent with deep peritumoral infiltration: the $$\phi $$ -index. Clin. Cancer Res. 23(16), 4724–4734 (2017). https://doi.org/10.1158/1078-0432.CCR-16-1871
2. Chang, K., et al.: Residual convolutional neural network for the determination of IDH status in low- and high-grade gliomas from MR imaging. Clin. Cancer Res. 24(5), 1073–1081 (2018). https://doi.org/10.1158/1078-0432.CCR-17-2236
3. Korfiatis, P., Kline, T.L., Lachance, D.H., Parney, I.F., Buckner, J.C., Erickson, B.J.: Residual deep convolutional neural network predicts MGMT methylation status. J. Digit. Imaging 30(5), 622–628 (2017). https://doi.org/10.1007/s10278-017-0009-z
4. Binder, Z.A., et al.: Epidermal growth factor receptor extracellular domain mutations in glioblastoma present opportunities for clinical imaging and therapeutic development. Cancer Cell 34(1), 163–177 (2018). https://doi.org/10.1016/j.ccell.2018.06.006
5. Akbari, H., et al.: Imaging Surrogates of infiltration obtained via multiparametric imaging pattern analysis predict subsequent location of recurrence of glioblastoma. Neurosurgery 78(4), 572–580 (2016). https://doi.org/10.1227/NEU.0000000000001202
Cited by 313 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Hybrid federated learning with brain-region attention network for multi-center Alzheimer's disease detection;Pattern Recognition;2024-09
2. Towards optimal learning: Investigating the impact of different model updating strategies in federated learning;Expert Systems with Applications;2024-09
3. Neural Networks Based Smart E-Health Application for the Prediction of Tuberculosis Using Serverless Computing;IEEE Journal of Biomedical and Health Informatics;2024-09
4. A federated learning architecture for secure and private neuroimaging analysis;Patterns;2024-08
5. Transformers and large language models in healthcare: A review;Artificial Intelligence in Medicine;2024-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3