Abstract
AbstractDNA is the molecular basis of life and would total about three meters if linearly untangled. To fit in the cell nucleus at the micrometer scale, DNA has, therefore, to fold itself into several layers of hierarchical structures, which are thought to be associated with functional compartmentalization of genomic features like genes and their regulatory elements. For this reason, understanding the mechanisms of genome folding is a major biological research problem. Studying chromatin conformation requires high computational resources and complex data analyses pipelines. In this chapter, we first present the PyGMQL software for interactive and scalable data exploration for genomic data. PyGMQL allows the user to inspect genomic datasets and design complex analysis pipelines. The software presents itself as a easy-to-use Python library and interacts seamlessly with other data analysis packages. We then use the software for the study of chromatin conformation data. We focus on the epigenetic determinants of Topologically Associating Domains (TADs), which are region of high self chromatin interaction. The results of this study highlight the existence of a “grammar of genome folding” which dictates the formation of TADs and boundaries, which is based on the CTCF insulator protein. Finally we focus on the relationship between chromatin conformation and gene expression, designing a graph representation learning model for the prediction of gene co-expression from gene topological features obtained from chromatin conformation data. We demonstrate a correlation between chromatin topology and co-expression, shedding a new light on this debated topic and providing a novel computational framework for the study of co-expression networks.
Publisher
Springer International Publishing