Computational Inference of DNA Folding Principles: From Data Management to Machine Learning

Author:

Nanni Luca

Abstract

AbstractDNA is the molecular basis of life and would total about three meters if linearly untangled. To fit in the cell nucleus at the micrometer scale, DNA has, therefore, to fold itself into several layers of hierarchical structures, which are thought to be associated with functional compartmentalization of genomic features like genes and their regulatory elements. For this reason, understanding the mechanisms of genome folding is a major biological research problem. Studying chromatin conformation requires high computational resources and complex data analyses pipelines. In this chapter, we first present the PyGMQL software for interactive and scalable data exploration for genomic data. PyGMQL allows the user to inspect genomic datasets and design complex analysis pipelines. The software presents itself as a easy-to-use Python library and interacts seamlessly with other data analysis packages. We then use the software for the study of chromatin conformation data. We focus on the epigenetic determinants of Topologically Associating Domains (TADs), which are region of high self chromatin interaction. The results of this study highlight the existence of a “grammar of genome folding” which dictates the formation of TADs and boundaries, which is based on the CTCF insulator protein. Finally we focus on the relationship between chromatin conformation and gene expression, designing a graph representation learning model for the prediction of gene co-expression from gene topological features obtained from chromatin conformation data. We demonstrate a correlation between chromatin topology and co-expression, shedding a new light on this debated topic and providing a novel computational framework for the study of co-expression networks.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3