Deep Learning in Multi-step Forecasting of Chaotic Dynamics

Author:

Sangiorgio Matteo

Abstract

AbstractThe prediction of chaotic dynamical systems’ future evolution is widely debated and represents a hot topic in the context of nonlinear time series analysis. Recent advances in the field proved that machine learning techniques, and in particular artificial neural networks, are well suited to deal with this problem. The current state-of-the-art primarily focuses on noise-free time series, an ideal situation that never occurs in real-world applications. This chapter provides a comprehensive analysis that aims at bridging the gap between the deterministic dynamics generated by archetypal chaotic systems, and the real-world time series. We also deeply explore the importance of different typologies of noise, namely observation and structural noise. Artificial intelligence techniques turned out to provide robust predictions, and potentially represent an effective and flexible alternative to the traditional physically-based approach for real-world applications. Besides the accuracy of the forecasting, the domain-adaptation analysis attested the high generalization capability of the neural predictors across a relatively heterogeneous spatial domain.

Publisher

Springer International Publishing

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3