Abstract
AbstractBiobased polymers are of great interest due to the release of tension on non-renewable petroleum-based polymers for environmental concerns. However, biobased polymers usually have poor mechanical and barrier properties when used as the main component of coatings and films, but they can be improved by adding nanoscale reinforcing agents (nanoparticles - NPs or fillers), thus forming nanocomposites. The nano-sized components have a larger surface area that favors the filler-matrix interactions and the resulting material yield. For example, natural fibers from renewable plants could be used to improve the mechanical strength of the biobased composites. In addition to the mechanical properties, the optical, thermal and barrier properties are mainly effective on the selection of type or the ratio of biobased components. Biobased nanocomposites are one of the best alternatives to conventional polymer composites due to their low density, transparency, better surface properties and biodegradability, even with low filler contents. In addition, these biomaterials are also incorporated into composite films as nano-sized bio-fillers for the reinforcement or as carriers of some bioactive compounds. Therefore, nanostructures may provide antimicrobial properties, oxygen scavenging ability, enzyme immobilization or act as a temperature or oxygen sensor. The promising result of biobased functional polymer nanocomposites is shelf life extension of foods, and continuous improvements will face the future challenges. This chapter will focus on biobased materials used in nanocomposite polymers with their functional properties for food packaging applications.
Publisher
Springer International Publishing
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献