Author:
Demir Ugur,Zhang Zheyuan,Wang Bin,Antalek Matthew,Keles Elif,Jha Debesh,Borhani Amir,Ladner Daniela,Bagci Ulas
Publisher
Springer International Publishing
Reference17 articles.
1. Bilic, P., et al.: The liver tumor segmentation benchmark (LiTS). arXiv preprint arXiv:1901.04056 (2019)
2. Cao, H., et al.: Swin-Unet: Unet-like pure transformer for medical image segmentation. arXiv preprint arXiv:2105.05537 (2021)
3. Chlebus, G., Schenk, A., Moltz, J.H., van Ginneken, B., Hahn, H.K., Meine, H.: Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing. Sci. Rep. 8(1), 1–7 (2018)
4. Chuquicusma, M.J., Hussein, S., Burt, J., Bagci, U.: How to fool radiologists with generative adversarial networks? A visual turing test for lung cancer diagnosis. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 240–244. IEEE (2018)
5. Cornelis, F.H., et al.: Precision of manual two-dimensional segmentations of lung and liver metastases and its impact on tumour response assessment using RECIST 1.1. Eur. Radiol. Exp. 1(1), 1–7 (2017). https://doi.org/10.1186/s41747-017-0015-4
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献