Abstract
AbstractThere are immunological consequences to the method by which neutrophils undergo cell death. Neutrophil apoptosis, called silent death, leads to the resolution of inflammation, while NETosis deepens and prolongs the inflammatory response and is associated with a worse prognosis of severe infections, e.g., sepsis. Besides nociceptive inhibition, local anaesthetics modulate leukocyte functions, even at low, clinically relevant concentrations. There is currently no data on ropivacaine NETosis, and this study aimed to evaluate the impact of clinical concentrations of ropivacaine (0.0007, 0.007 and 1.4 mmol/L) and lidocaine (0.002, 0.02 and 4 mmol/L) on apoptosis and NETosis of adult peripheral blood neutrophils after 2 h of incubation. Neutrophil identification, apoptosis and NETosis were evaluated by flow cytometry using forward and side scatter characteristics and fluorescent labelling: CD15 for neutrophils identification; Annexin V and propidium iodide for apoptosis and citrullinated histone H3 and myeloperoxidase for NETosis. Lidocaine (4 mmol/L) and ropivacaine (1.4 mmol/L) induced early apoptosis in resting but not in stimulated neutrophils. Low doses of ropivacaine (0.0007 and 0.007 mmol/L) decreased the number of late apoptotic neutrophils, and the lowest dose slightly increased their viability. None of the drugs induced NETosis in resting neutrophils but decreased NETosis at clinical concentrations compared to PMA-stimulated 4 mM lidocaine, PMA-stimulated control, and 1.4 mM ropivacaine. The effect of lidocaine and ropivacaine on apoptosis and NETosis depended on neutrophil stimulation and drug concentrations. Ropivacaine tends to be cytoprotective at concentrations observed in plasma under local anaesthesia. Lidocaine enhanced NETosis at high concentration only in stimulated neutrophils. Thus, both drugs have the ability to change the course of inflammation.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Cell Biology
Reference46 articles.
1. Brinkmann V, Reichard U, Goosmann C, Fauler B, UhlemannWeiss YDS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5.
2. Masuda S, Nakazawa D, Shida H, Miyoshi A, Kusunoki Y, Tomaru U, et al. NETosis markers: quest for specific, objective, and quantitative markers. Clin Chim Acta. 2016;459:89–93.
3. Saito T, Takahashi H, Doken H, Koyama H, Aratani Y. Phorbol myristate acetate induces neutrophil death through activation of p38 mitogen-activated protein kinase that requires endogenous reactive oxygen species other than HOCl. Biosci Biotechnol Biochem. 2005;69(11):2207–12.
4. Lawrence SM, Corriden R, Nizet V. How neutrophils meet their end. Trends Immunol. 2020;41(6):531–44.
5. Lahoz-Beneytez J, Elemans M, Zhang Y, Ahmed R, Salam A, Block M, et al. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives Blood. J Am Soc Hematol. 2016;127(26):3431–8.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献