Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Amari, S.: Neural learning in structured parameter spaces-natural Riemannian gradient. In: Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing Systems 9, pp. 127–133. MIT, London (1997)
2. Amari, S.: Natural gradient works efficiently in learning. Neural Comput. 10(2), 251–276 (1998)
3. Amari, S.: Information Geometry and Its Applications. Number volume 194 in Applied mathematical sciences. Springer, Tokyo (2016)
4. Amari, S., Karakida, R., Oizumi, M.: Information geometry connecting Wasserstein distance and Kullback-Leibler divergence via the Entropy-Relaxed Transportation Problem (2017).
arXiv:1709.10219
[cs, math]
5. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN (2017).
arXiv:1701.07875
[cs, stat]
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献